Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.767
Filtrar
1.
Sci Rep ; 14(1): 8933, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637659

RESUMO

Plasma metabolomics holds potential for precision medicine, but limited information is available to compare the performance of such methods across multiple cohorts. We compared plasma metabolite profiles after an overnight fast in 11,309 participants of five population-based Swedish cohorts (50-80 years, 52% women). Metabolite profiles were uniformly generated at a core laboratory (Metabolon Inc.) with untargeted liquid chromatography mass spectrometry and a comprehensive reference library. Analysis of a second sample obtained one year later was conducted in a subset. Of 1629 detected metabolites, 1074 (66%) were detected in all cohorts while only 10% were unique to one cohort, most of which were xenobiotics or uncharacterized. The major classes were lipids (28%), xenobiotics (22%), amino acids (14%), and uncharacterized (19%). The most abundant plasma metabolome components were the major dietary fatty acids and amino acids, glucose, lactate and creatinine. Most metabolites displayed a log-normal distribution. Temporal variability was generally similar to clinical chemistry analytes but more pronounced for xenobiotics. Extensive metabolite-metabolite correlations were observed but mainly restricted to within each class. Metabolites were broadly associated with clinical factors, particularly body mass index, sex and renal function. Collectively, our findings inform the conduct and interpretation of metabolite association and precision medicine studies.


Assuntos
Metaboloma , Metabolômica , Humanos , Feminino , Masculino , Metabolômica/métodos , Plasma/metabolismo , Aminoácidos/metabolismo , Suécia
2.
Acta Neuropathol ; 147(1): 52, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467937

RESUMO

Parkinson's disease (PD) starts at the molecular and cellular level long before motor symptoms appear, yet there are no early-stage molecular biomarkers for diagnosis, prognosis prediction, or monitoring therapeutic response. This lack of biomarkers greatly impedes patient care and translational research-L-DOPA remains the standard of care more than 50 years after its introduction. Here, we performed a large-scale, multi-tissue, and multi-platform proteomics study to identify new biomarkers for early diagnosis and disease monitoring in PD. We analyzed 4877 cerebrospinal fluid, blood plasma, and urine samples from participants across seven cohorts using three orthogonal proteomics methods: Olink proximity extension assay, SomaScan aptamer precipitation assay, and liquid chromatography-mass spectrometry proteomics. We discovered that hundreds of proteins were upregulated in the CSF, blood, or urine of PD patients, prodromal PD patients with DAT deficit and REM sleep behavior disorder or anosmia, and non-manifesting genetic carriers of LRRK2 and GBA mutations. We nominate multiple novel hits across our analyses as promising markers of early PD, including DOPA decarboxylase (DDC), also known as L-aromatic acid decarboxylase (AADC), sulfatase-modifying factor 1 (SUMF1), dipeptidyl peptidase 2/7 (DPP7), glutamyl aminopeptidase (ENPEP), WAP four-disulfide core domain 2 (WFDC2), and others. DDC, which catalyzes the final step in dopamine synthesis, particularly stands out as a novel hit with a compelling mechanistic link to PD pathogenesis. DDC is consistently upregulated in the CSF and urine of treatment-naïve PD, prodromal PD, and GBA or LRRK2 carrier participants by all three proteomics methods. We show that CSF DDC levels correlate with clinical symptom severity in treatment-naïve PD patients and can be used to accurately diagnose PD and prodromal PD. This suggests that urine and CSF DDC could be a promising diagnostic and prognostic marker with utility in both clinical care and translational research.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico , Doença de Parkinson/genética , Dopa Descarboxilase/genética , Proteômica , Biomarcadores/líquido cefalorraquidiano , Plasma/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre , Descarboxilases de Aminoácido-L-Aromático
3.
BMC Neurol ; 24(1): 92, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468258

RESUMO

BACKGROUND: Human prion diseases (HPDs) are fatal neurodegenerative disorders characterized by abnormal prion proteins (PrPSc). However, the detection of prion seeding activity in patients with high sensitivity remains challenging. Even though real-time quaking-induced conversion (RT-QuIC) assay is suitable for detecting prion seeding activity in a variety of specimens, it shows lower accuracy when whole blood, blood plasma, and blood-contaminated tissue samples are used. In this study, we developed a novel technology for the in vitro amplification of abnormal prion proteins in HPD to the end of enabling their detection with high sensitivity known as the enhanced quaking-induced conversion (eQuIC) assay. METHODS: Three antibodies were used to develop the novel eQUIC method. Thereafter, SD50 seed activity was analyzed using brain tissue samples from patients with prion disease using the conventional RT-QUIC assay and the novel eQUIC assay. In addition, blood samples from six patients with solitary prion disease were analyzed using the novel eQuIC assay. RESULTS: The eQuIC assay, involving the use of three types of human monoclonal antibodies, showed approximately 1000-fold higher sensitivity than the original RT-QuIC assay. However, when this assay was used to analyze blood samples from six patients with sporadic human prion disease, no prion activity was detected. CONCLUSION: The detection of prion seeding activity in blood samples from patients with sporadic prion disease remains challenging. Thus, the development of alternative methods other than RT-QuIC and eQuIC will be necessary for future research.


Assuntos
Síndrome de Creutzfeldt-Jakob , Doenças Priônicas , Príons , Humanos , Príons/metabolismo , Proteínas Priônicas , Doenças Priônicas/diagnóstico , Doenças Priônicas/metabolismo , Encéfalo/metabolismo , Plasma/metabolismo , Síndrome de Creutzfeldt-Jakob/diagnóstico
4.
Exp Oncol ; 45(4): 457-462, 2024 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-38328844

RESUMO

BACKGROUND: SLAMF1/CD150 is an active player in B cell signaling networks in chronic lymphocytic leukemia (CLL). CD150-mediated signaling initiates through a homophilic CD150 binding, which spans the adjacent cells, or the interaction with the soluble CD150 isoform (sCD150). The expression of sCD150 isoform at the mRNA and protein levels ex vivo was confirmed. However, it is unclear whether sCD150 isoform present in the blood plasma of CLL patients is a factor in the constitutive activation of CD150+ cells. The aim of this study was to develop an ELISA assay for the specific sCD150 evaluation and assess the sCD150 levels in the blood plasma of CLL patients with different CD150 expression on B cells. MATERIALS AND METHODS: Blood plasma samples and peripheral blood mononuclear cells from 40 previously untreated CLL patients were analyzed. An ELISA method, ex vivo drug sensitivity assay, and a cell viability assay were used. RESULTS: The sCD150 isoform was found in all studied plasma samples of CLL patients at different levels regardless of the cell surface CD150 expression status of B cells and sCD150 mRNA expression. CLL cases with low levels of the cell surface CD150 expression in B cells are characterized by high levels of sCD150 in blood plasma in contrast to the CLL cases with high cell surface CD150 expression on B cells. The elevated levels of sCD150 in blood plasma are associated with a better sensitivity of malignant B cells to cyclophosphamide and bendamustine. CONCLUSIONS: The sCD150 isoform is actively secreted by CLL B cells with its accumulation in blood plasma, which may be regarded as an additional factor in the CLL clinicopathologic variability.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Leucemia Linfocítica Crônica de Células B/patologia , Leucócitos Mononucleares/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Isoformas de Proteínas/genética , RNA Mensageiro/genética , Plasma/metabolismo
5.
Cell Commun Signal ; 22(1): 138, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374138

RESUMO

BACKGROUND: Applications of nonthermal plasma have expanded beyond the biomedical field to include antibacterial, anti-inflammatory, wound healing, and tissue regeneration. Plasma enhances epithelial cell repair; however, the potential damage to deep tissues and vascular structures remains under investigation. RESULT: This study assessed whether liquid plasma (LP) increased nitric oxide (NO) production in human umbilical vein endothelial cells by modulating endothelial NO synthase (eNOS) phosphorylation and potential signaling pathways. First, we developed a liquid plasma product and confirmed the angiogenic effect of LP using the Matrigel plug assay. We found that the NO content increased in plasma-treated water. NO in plasma-treated water promoted cell migration and angiogenesis in scratch and tube formation assays via vascular endothelial growth factor mRNA expression. In addition to endothelial cell proliferation and migration, LP influenced extracellular matrix metabolism and matrix metalloproteinase activity. These effects were abolished by treatment with NG-L-monomethyl arginine, a specific inhibitor of NO synthase. Furthermore, we investigated the signaling pathways mediating the phosphorylation and activation of eNOS in LP-treated cells and the role of LKB1-adenosine monophosphate-activated protein kinase in signaling. Downregulation of adenosine monophosphate-activated protein kinase by siRNA partially inhibited LP-induced eNOS phosphorylation, angiogenesis, and migration. CONCLUSION: The present study suggests that LP treatment may be a novel strategy for promoting angiogenesis in vascular damage. Video Abstract.


Assuntos
Matriz Extracelular , Óxido Nítrico Sintase Tipo III , Plasma , Lesões do Sistema Vascular , Humanos , Monofosfato de Adenosina/metabolismo , Monofosfato de Adenosina/farmacologia , 60489 , Matriz Extracelular/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Neovascularização Fisiológica , Óxido Nítrico/metabolismo , Óxido Nítrico/farmacologia , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase/farmacologia , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação , Proteínas Quinases/metabolismo , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/metabolismo , Lesões do Sistema Vascular/metabolismo , Lesões do Sistema Vascular/terapia , Plasma/metabolismo
6.
Biomolecules ; 14(2)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38397467

RESUMO

Altered properties of fibrin clots have been associated with bleeding and thrombotic disorders, including hemophilia or trauma and heart attack or stroke. Clotting factors, such as thrombin and tissue factor, or blood plasma proteins, such as fibrinogen, play critical roles in fibrin network polymerization. The concentrations and combinations of these proteins affect the structure and stability of clots, which can lead to downstream complications. The present work includes clots made from plasma and purified fibrinogen and shows how varying fibrinogen and activation factor concentrations affect the fibrin properties under both conditions. We used a combination of scanning electron microscopy, confocal microscopy, and turbidimetry to analyze clot/fiber structure and polymerization. We quantified the structural and polymerization features and found similar trends with increasing/decreasing fibrinogen and thrombin concentrations for both purified fibrinogen and plasma clots. Using our compiled results, we were able to generate multiple linear regressions that predict structural and polymerization features using various fibrinogen and clotting agent concentrations. This study provides an analysis of structural and polymerization features of clots made with purified fibrinogen or plasma at various fibrinogen and clotting agent concentrations. Our results could be utilized to aid in interpreting results, designing future experiments, or developing relevant mathematical models.


Assuntos
Fibrinogênio , Trombose , Humanos , Fibrinogênio/metabolismo , Trombina/metabolismo , Coagulação Sanguínea , Plasma/metabolismo , Fibrina/química
7.
J Thromb Haemost ; 22(4): 896-904, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38142844

RESUMO

Thrombotic thrombocytopenic purpura (TTP) is a life-threatening thrombotic disorder associated with a severe deficiency of ADAMTS-13-the protease that cleaves von Willebrand factor. Plasma therapy is the current standard of care for managing acute episodes of TTP, which involves removing patient plasma and replacing it with donor plasma to raise the level of ADAMTS-13 activity. Recently, therapies aimed at replacing ADAMTS-13 have been investigated as possible substitutes or add-ons to plasma therapy for congenital and immune-mediated TTP. Enzyme replacement therapy provides recombinant ADAMTS-13 via intravenous (i.v.) infusion to restore enzyme activity. Recombinant ADAMTS-13-loaded platelets localize to the site of thrombus formation in a more concentrated manner than enzyme replacement or plasma therapy. ADAMTS-13-encoding messenger RNA aims to induce a steady supply of secreted protein and gene therapy is a potentially curative strategy. Overall, targeted ADAMTS-13 replacement therapies may provide better outcomes than plasma therapy by achieving higher levels of ADAMTS-13 activity and a more sustained response with fewer adverse events. Herein, we describe targeted ADAMTS-13 replacement therapies for the treatment of TTP and discuss the advantages and limitations of each approach.


Assuntos
Púrpura Trombocitopênica Trombótica , Trombose , Humanos , Proteína ADAMTS13 , Plaquetas/metabolismo , Plasma/metabolismo , Fator de von Willebrand/uso terapêutico , Fator de von Willebrand/metabolismo
8.
Int J Mol Sci ; 24(23)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38069410

RESUMO

Alzheimer's disease (AD) is the most common type of dementia, characterized by the abnormal accumulation of protein aggregates in the brain, known as neurofibrillary tangles and amyloid-ß (Aß) plaques. It is believed that an imbalance between cerebral and peripheral pools of Aß may play a relevant role in the deposition of Aß aggregates. Therefore, in this study, we aimed to evaluate the effect of the removal of Aß from blood plasma on the accumulation of amyloid plaques in the brain. We performed monthly plasma exchange with a 5% mouse albumin solution in the APP/PS1 mouse model from 3 to 7 months old. At the endpoint, total Aß levels were measured in the plasma, and soluble and insoluble brain fractions were analyzed using ELISA. Brains were also analyzed histologically for amyloid plaque burden, plaque size distributions, and gliosis. Our results showed a reduction in the levels of Aß in the plasma and insoluble brain fractions. Interestingly, histological analysis showed a reduction in thioflavin-S (ThS) and amyloid immunoreactivity in the cortex and hippocampus, accompanied by a change in the size distribution of amyloid plaques, and a reduction in Iba1-positive cells. Our results provide preclinical evidence supporting the relevance of targeting Aß in the periphery and reinforcing the potential use of plasma exchange as an alternative non-pharmacological strategy for slowing down AD pathogenesis.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/metabolismo , Placa Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Troca Plasmática , Camundongos Transgênicos , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Plasma/metabolismo , Modelos Animais de Doenças
9.
Animal ; 17(12): 101029, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38064856

RESUMO

Metabolomics has been used to characterise many biological matrices and obtain detailed pictures of biological systems based on many metabolites. Plasma and serum are two blood-derived biofluids commonly used to assess and monitor the organismal metabolism and obtain information on the physiological and health conditions of an animal. Plasma is the supernatant that is separated from the cellular components after centrifugation of the blood that is first added with an anticoagulant. Serum is obtained after centrifugation of the blood that has been coagulated. The choice of one or the other biofluid for metabolomic analyses is related to specific analytical needs and technical issues, to problems derived by the collection and preparation steps, in particular when specimens are sampled from animals involved in field studies. Thus far, most of the metabolomic studies that compared plasma and serum have been carried out in humans and very little is known on the pigs. In this study, we used a targeted metabolomic platform that can detect about 180 metabolites of five biochemical classes to compare plasma and serum profiles of samples collected from 24 pigs. To also obtain a cross-species comparative metabolomic analysis, information for human plasma and serum derived from the same platform was retrieved from previous studies. Statistical analyses included univariate and multivariate approaches aimed at identifying stable and/or differentially abundant metabolites between the two porcine biofluids. A total of 154 (∼83%) metabolites passed the initial quality control, indicating a good repeatability of the analytical platform in pigs. Discarded metabolites included aspartate and biogenic amines that were already reported to be unstable in human studies. More than 80% of the metabolites had similar profiles in both porcine biofluids (average correlation was 0.75). Concentrations were usually higher in serum than in plasma, in agreement with what was already reported in humans. The univariate analysis identified 44 metabolites that had statistically different concentrations between porcine plasma and serum, of which 28 metabolites were also confirmed by the multivariate analysis. The obtained picture described similarities and differences between these two biofluids in pigs and the related human-pig comparisons. The obtained information can be useful for the choice of one or the other matrix for the implementation of metabolomic studies in this livestock species. The results can also provide useful hints to valuing the pig as animal model, in particular when metabolite-derived physiological states are relevant.


Assuntos
Metabolômica , Plasma , Humanos , Animais , Suínos , Metabolômica/métodos , Plasma/metabolismo , Soro/metabolismo
10.
Sci Rep ; 13(1): 21703, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38066066

RESUMO

The pathogenesis of Alzheimer's disease (AD) is believed to involve the accumulation of amyloid-ß in the brain, which is produced by the sequential cleavage of amyloid precursor protein (APP) by ß-secretase and γ-secretase. Recently, analysis of genomic DNA and mRNA from postmortem brain neurons has revealed intra-exonic recombinants of APP (gencDNA), which have been implicated in the accumulation of amyloid-ß. In this study, we computationally analyzed publicly available sequence data (SRA) using probe sequences we constructed to screen APP gencDNAs. APP gencDNAs were detected in SRAs constructed from both genomic DNA and RNA obtained from the postmortem brain and in the SRA constructed from plasma cell-free mRNA (cf-mRNA). The SRA constructed from plasma cf-mRNA showed a significant difference in the number of APP gencDNA reads between SAD and NCI: the p-value from the Mann-Whitney U test was 5.14 × 10-6. The transcripts were also found in circulating nucleic acids (CNA) from our plasma samples with NGS analysis. These data indicate that transcripts of APP gencDNA can be detected in blood plasma and suggest the possibility of using them as blood biomarkers for Alzheimer's disease.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Humanos , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Plasma/metabolismo , RNA Mensageiro/genética , DNA
11.
Int J Biol Macromol ; 253(Pt 6): 127279, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37806411

RESUMO

Snakebite envenomation is classified as a Neglected Tropical Disease. Bothrops jararaca venom induces kidney injury and coagulopathy. HF3, a hemorrhagic metalloproteinase of B. jararaca venom, participates in the envenomation pathogenesis. We evaluated the effects of HF3 in mouse kidney and blood plasma after injection in the thigh muscle, mimicking a snakebite. Transcriptomic analysis showed differential expression of 31 and 137 genes related to kidney pathology after 2 h and 6 h, respectively. However, only subtle changes were observed in kidney proteome, with differential abundance of 15 proteins after 6 h, including kidney injury markers. N-terminomic analysis of kidney proteins showed 420 proteinase-generated peptides compatible with meprin specificity, indicating activation of host proteinases. Plasma analysis revealed differential abundance of 90 and 219 proteins, respectively, after 2 h and 6 h, including coagulation-cascade and complement-system components, and creatine-kinase, whereas a semi-specific search of N-terminal peptides indicated activation of endogenous proteinases. HF3 promoted host reactions, altering the gene expression and the proteolytic profile of kidney tissue, and inducing plasma proteome imbalance driven by changes in abundance and proteolysis. The overall response of the mouse underscores the systemic action of a hemorrhagic toxin that transcends local tissue damage and is related to known venom-induced systemic effects.


Assuntos
Bothrops , Venenos de Crotalídeos , Camundongos , Animais , Proteoma , Multiômica , Metaloproteases/metabolismo , Venenos de Serpentes/toxicidade , Peptídeos , Plasma/metabolismo , Rim/metabolismo , Bothrops/metabolismo , Venenos de Crotalídeos/toxicidade , Venenos de Crotalídeos/metabolismo
12.
J Steroid Biochem Mol Biol ; 234: 106401, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37734670

RESUMO

As a stress hormone, cortisol and more recently its metabolites are analysed when assessing fish stress and welfare status, although the exact identity of these metabolites is not clearly defined for the Atlantic salmon. LC-MS/MS techniques, owing to their specificity, sensitivity and ability to simultaneously identify and measure several relevant compounds, can be useful tools for this purpose. Using the guidelines provided by the European Decision no. 657/2002/EC for validation, the LC-MS/MS method presented here, can reliably identify and quantify cortisol and five of its metabolites (5ß-THF, cortisone, 5ß-DHE, 5ß-THE and ß-cortolone) in bile and faeces, and cortisol and cortisone in skin mucus and blood plasma of farmed Atlantic salmon within 15 min. Identified as the most predominant compound in faeces and bile, 5ß-THE is proposed as a candidate stress biomarker when using these matrices. A decision limit (CCα) below 5 ng/mL, a detection capability (CCß) and a limit of detection (LOD) below 10 ng/mL and a limit of quantitation (LOQ) below 30 ng/mL were typically obtained for most of the compounds. The concentrations of these compounds measured in either non-stressed or stressed fish were all above the CCα, CCß, LOD and the LOQ of the method. The latter consequently demonstrated significant difference in cortisol metabolites concentrations between the two groups of fish. The present study further demonstrates that pooling of samples from several individuals could provide reliable results for farmed fish stress evaluation, when sample materials are insufficient in terms of quantity.


Assuntos
Cortisona , Salmo salar , Animais , Hidrocortisona , Cromatografia Líquida/métodos , Salmo salar/metabolismo , Cortisona/metabolismo , Bile/metabolismo , Espectrometria de Massas em Tandem/métodos , Fezes/química , Muco/química , Muco/metabolismo , Plasma/química , Plasma/metabolismo
13.
Biochem Pharmacol ; 217: 115831, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37777162

RESUMO

Obsessive-compulsive disorder (OCD) is a neuropsychiatric condition characterized by intrusive, repetitive thoughts and behaviors. Our study uses a validated 8-OH-DPAT-induced experimental model of OCD in rodents. We focus on the modulatory effects of Insulin-like growth factor-1 (IGF-1) and glucagon-like peptide-1 (GLP-1), which are linked to neurodevelopment and survival. Current research investigates melatonin, a molecule with neuroprotective properties and multiple functions. Melatonin has beneficial effects on various illnesses, including Alzheimer's, Parkinson's, and depression, indicating its potential efficacy in treating OCD. In the present study, we employed two doses of melatonin, 5 mg/kg and 10 mg/kg, demonstrating a dose-dependent effect on 8-OH-DPAT-induced rat changes. In addition, the melatonin antagonist luzindole 5 mg/kg was utilized to compare and validate the efficacy of melatonin. In-silico studies alsocontribute to understanding the activation of IGF-1/GLP-1 pathways by melatonin. Current research indicates restoring neurochemical measurements on various biological samples (brain homogenates, CSF, and blood plasma) and morphological and histological analyses. In addition, the current research seeks to increase understanding of OCD and investigate potential new treatment strategies. Therefore, it is evident from the aforementioned research that the protective effect of melatonin can serve as a strong basis for developing a new OCD treatment by upregulating IGF-1 and GLP-1 levels. The primary focus of current study revolves around the examination of melatonin as an activator of IGF-1/GLP-1, with the aim of potentially mitigating behavioral, neurochemical, and histopathological abnormalities in an experimental model of obsessive-compulsive disorder caused by 8-OH-DPAT in adult Wistar rats.


Assuntos
Melatonina , Transtorno Obsessivo-Compulsivo , Ratos , Animais , Fator de Crescimento Insulin-Like I/metabolismo , Melatonina/farmacologia , Melatonina/uso terapêutico , Peptídeo 1 Semelhante ao Glucagon , 8-Hidroxi-2-(di-n-propilamino)tetralina/uso terapêutico , Ratos Wistar , Transtorno Obsessivo-Compulsivo/diagnóstico , Transtorno Obsessivo-Compulsivo/tratamento farmacológico , Transtorno Obsessivo-Compulsivo/etiologia , Encéfalo/metabolismo , Plasma/metabolismo
14.
Neurotoxicology ; 98: 61-85, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37549874

RESUMO

Obsessive-Compulsive disorder (OCD) is a long-term and persistent mental illness characterised by obsessive thoughts and compulsive behaviours. Numerous factors can contribute to the development or progression of OCD. These factors may result from the dysregulation of multiple intrinsic cellular pathways, including SIRT-1, Nrf2, and HO-1. Inhibitors of selective serotonin reuptake (SSRIs) are effective first-line treatments for OCD. In our ongoing research, we have investigated the role of SIRT-1, Nrf2, and HO-1, as well as the neuroprotective potential of Acetyl-11-keto-beta boswellic acid (AKBA) against behavioural and neurochemical changes in rodents treated with 8-OH-DPAT. In addition, the effects of AKBA were compared to those of fluvoxamine (FLX), a standard OCD medication. Injections of 8-OH-DPAT into the intra-dorso raphe nuclei (IDRN) of rats for seven days induced repetitive and compulsive behaviour accompanied by elevated oxidative stress, inflammatory processes, apoptosis, and neurotransmitter imbalances in CSF, blood plasma, and brain samples. Chronic administration of AKBA at 50 mg/kg and 100 mg/kg p.o. restored histopathological alterations in the cortico-striatal-thalamo-cortical (CSTC) pathway, including the cerebral cortex, striatum, and hippocampal regions. Our investigation revealed that when AKBA and fluvoxamine were administered together, the alterations were restored to a greater degree than when administered separately. These findings demonstrate that the neuroprotective effect of AKBA can serve as an effective basis for developing a novel OCD treatment.


Assuntos
Transtorno Obsessivo-Compulsivo , Triterpenos , Ratos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Fluvoxamina/farmacologia , Fluvoxamina/uso terapêutico , 8-Hidroxi-2-(di-n-propilamino)tetralina/uso terapêutico , Transtorno Obsessivo-Compulsivo/induzido quimicamente , Transtorno Obsessivo-Compulsivo/tratamento farmacológico , Transtorno Obsessivo-Compulsivo/metabolismo , Córtex Cerebral/metabolismo , Triterpenos/farmacologia , Plasma/metabolismo
15.
Methods Mol Biol ; 2709: 319-332, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37572292

RESUMO

Rapidly reversible anticoagulant agents have great clinical potential. Oligonucleotide-based anticoagulant agents are uniquely positioned to fill this clinical niche, as they are able to be deactivated through the introduction of the reverse complement oligo. Once the therapeutic and the antidote oligos meet in solution, they are able to undergo isothermal reassociation to form short, inactive, duplexes that are rapidly secreted via filtration by the kidneys. The formation of the duplexes interrupts the structure of the anticoagulant oligo, allowing normal coagulation to be restored. To effectively assess these new anticoagulants, a variety of methods may be employed. The measurement of thrombin generation (TG) reflects the overall capacity of plasma to produce active thrombin and provides a strong contribution to identifying new anticoagulant drugs, including DNA/RNA thrombin binding aptamer carrying fibers which are used through this chapter as an example. Here we describe the TG assessed by Calibrated Automated Thrombogram (CAT) assay in a fully automated system. This method is based on the detection of TG in plasma samples by measuring fluorescent signals released from a quenched fluorogenic thrombin substrate and the subsequent conversion of these signals in TG curves.


Assuntos
Nanopartículas , Ácidos Nucleicos , Trombina/metabolismo , Anticoagulantes/farmacologia , Plasma/metabolismo , Corantes Fluorescentes , Testes de Coagulação Sanguínea/métodos
16.
J Pharm Biomed Anal ; 234: 115571, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37527618

RESUMO

The importance of plasma protein binding in the early stages of drug development is well recognized. Free and bound drug fractions in plasma are routinely determined with well-established methods. However, for physiological fluids with a small accessible volume and low protein concentrations, such as dermal interstitial fluid (dISF) validated methods are currently missing. Due to the low protein concentration and highly dynamic processes in the dermis, protein binding data obtained from plasma samples may underestimate in-vivo efficacy. This study aimed to validate a small volume rapid equilibrium dialysis (RED) for low protein samples, as a tool to examine drug-protein binding directly in the biological fluid at the site of action. The sample volume required for RED was successfully downscaled to 50 µl and plasma protein binding values of the four model drugs were consistent with previous studies with an average recovery of 88 ± 8% which makes all tested drugs suitable for small volume RED. Inter- and intra-batch variability showed sufficient reproducibility across RED plates. Small volume RED was successfully applied to assess the effects of interstitial parameters, including the evaluation of the major binding protein and the effects of binding protein concentration, drug concentration, and pH on the protein-bound drug fraction using 2% HSA and/or diluted human plasma as a surrogate for dISF.


Assuntos
Proteínas Sanguíneas , Diálise Renal , Humanos , Reprodutibilidade dos Testes , Proteínas Sanguíneas/metabolismo , Ligação Proteica , Plasma/metabolismo , Diálise
17.
Sci Rep ; 13(1): 12816, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550349

RESUMO

Aberrant glycosylation of glycoproteins has been linked with various pathologies. Therefore, understanding the relationship between aberrant glycosylation patterns and the onset and progression of the disease is an important research goal that may provide insights into cancer diagnosis and new therapy development. In this study, we use a surface plasmon resonance imaging biosensor and a lectin array to investigate aberrant glycosylation patterns associated with oncohematological disease-myelodysplastic syndromes (MDS). In particular, we detected the interaction between the lectins and glycoproteins present in the blood plasma of patients (three MDS subgroups with different risks of progression to acute myeloid leukemia (AML) and AML patients) and healthy controls. The interaction with lectins from Aleuria aurantia (AAL) and Erythrina cristagalli was more pronounced for plasma samples of the MDS and AML patients, and there was a significant difference between the sensor response to the interaction of AAL with blood plasma from low and medium-risk MDS patients and healthy controls. Our data also suggest that progression from MDS to AML is accompanied by sialylation of glycoproteins and increased levels of truncated O-glycans and that the number of lectins that allow discriminating different stages of disease increases as the disease progresses.


Assuntos
Técnicas Biossensoriais , Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Humanos , Lectinas , Glicosilação , Glicoproteínas/metabolismo , Síndromes Mielodisplásicas/terapia , Plasma/metabolismo
18.
PeerJ ; 11: e15661, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37456877

RESUMO

One of the biggest unanswered questions in the field of stress physiology is whether variation in chronic stress intensity will produce proportional (a gradient or graded) physiological response. We were specifically interested in the timing of the entrance into homeostatic overload, or the start of chronic stress symptoms. To attempt to fill this knowledge gap we split 40 captive house sparrows (Passer domesticus) into four groups (high stress, medium stress, low stress, and a captivity-only control) and subjected them to six bouts of chronic stress over a 6-month period. We varied the number of stressors/day and the length of each individual bout with the goal of producing groups that would experience different magnitudes of wear-and-tear. To evaluate the impact of chronic stress, at the start and end of each stress bout we measured body weight and three plasma metabolites (glucose, ketones, and uric acid) in both a fasted and fed state. All metrics showed significant differences across treatment groups, with the high stress group most frequently showing the greatest changes. However, the changes did not produce a consistent profile that matched the different chronic stress intensities. We also took samples after a prolonged recovery period of 6 weeks after the chronic stressors ended. The only group difference that persisted after 6 weeks was weight-all differences across groups in metabolites recovered. The results indicate that common blood metabolites are sensitive to stressors and may show signs of wear-and-tear, but are not reliable indicators of the intensity of long-term chronic stress. Furthermore, regulatory mechanisms are robust enough to recover within 6 weeks post-stress.


Assuntos
Corticosterona , Pardais , Animais , Estresse Fisiológico/fisiologia , Plasma/metabolismo
19.
Drugs R D ; 23(3): 245-255, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37466834

RESUMO

BACKGROUND AND OBJECTIVE: Human plasma is used for the generation of several life-saving drugs and contains valuable antibodies from the immunoglobulin classes IgG, IgM and IgA. Purified intravenous IgG solutions (IVIGs) form the majority of plasma-derived medicine to treat patients with various forms of immunodeficiencies. In conventional IVIG manufacturing processes, immunoglobulin classes IgM and IgA are often discarded as contaminants, but these antibody classes have been proven to be effective for the treatment of acute bacterial infections. Considering the increase in demand for human plasma-derived products and the ethical value of the raw material, a more resource-saving usage of human plasma is needed. Intensive research over the last decades showed that adverse reactions to IVIGs depend on the presence of thrombogenic factors, partially unfolded proteins, non-specific activation of the complement system, and blood group specific antibodies. Therefore, new IVIG preparations with reduced risks of adverse reactions are desirable. METHOD: A new manufacturing process that yields two biologics was established and quality attributes of the new IVIG solution (Yimmugo®) obtained from this process are presented. RESULTS: Here, we provide a biochemical characterization of Yimmugo®, a new 10% IVIG preparation. It is derived from human blood plasma by a combined manufacturing process, where IgM and IgA are retained for the production of a new biologic (trimodulin, currently under investigation in phase III clinical trials). Several improvements have been implemented in the manufacturing of Yimmugo® to reduce the risk of adverse reactions. Gentle and efficient mixing by vibration (called "vibromixing") during a process step where proteins are at risk to aggregate was implemented to potentially minimize protein damage. In addition, a dedicated process step for the removal of the complement system activator properdin was implemented, which resulted in very low anticomplementary activity levels. The absence of measurable thrombogenic activity in combination with a very high degree of functional monomeric antibodies predict excellent efficacy and tolerability. CONCLUSION: Yimmugo® constitutes a new high quality IVIG preparation derived from a novel manufacturing process that takes advantage of the full therapeutic immunoglobulin potential of human plasma.


Assuntos
Imunoglobulina G , Imunoglobulinas Intravenosas , Humanos , Imunoglobulinas Intravenosas/química , Imunoglobulinas Intravenosas/uso terapêutico , Fatores Imunológicos , Imunoglobulina A/metabolismo , Imunoglobulina M/metabolismo , Plasma/metabolismo
20.
PLoS One ; 18(5): e0285440, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37163560

RESUMO

Extracellular vesicles (EVs) isolated from plasma are increasingly recognized as promising circulating biomarkers for disease discovery and progression, as well as for therapeutic drug delivery. The scientific community underlined the necessity of standard operative procedures for the isolation and storage of the EVs to ensure robust results. The understanding of the impact of the pre-analytical variables is still limited and some considerations about plasma anticoagulants and isolation methods are necessary. Therefore, we performed a comparison study between EVs isolated by ultracentrifugation and by affinity substrate separation from plasma EDTA and sodium citrate. The EVs were characterized by Nano Tracking Analysis, Western Blot, cytofluorimetric analysis of surface markers, and lipidomic analysis. While anticoagulants did not significantly alter any of the analyzed parameters, the isolation methods influenced EVs size, purity, surface markers expression and lipidomic profile. Compared to ultracentrifugation, affinity substrate separation yielded bigger particles highly enriched in tetraspanins (CD9, CD63, CD81), fatty acids and glycerolipids, with a predominant LDL- and vLDL-like contamination. Herein, we highlighted that the isolation method should be carefully evaluated prior to study design and the need of standardized operative procedures for EVs isolation and application to biomarkers discovery.


Assuntos
Anticoagulantes , Vesículas Extracelulares , Humanos , Anticoagulantes/farmacologia , Anticoagulantes/metabolismo , Vesículas Extracelulares/metabolismo , Plasma/metabolismo , Biomarcadores/metabolismo , Western Blotting
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...